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Abstract
A general proof is given that for an asymmetric particle phase-space distribution
function, and in the absence of a homogeneous background magnetic field,
any unstable linear Weibel modes are isolated, i.e., restricted to discrete
wavenumbers. Starting from the linearized relativistic Vlasov equation it is
shown that, unless the asymmetry in the distribution function is precisely
zero, the broad ranges of unstable wavenumbers occurring for symmetric
distribution functions are reduced to discrete, isolated wavenumbers for
which unstable modes can exist. For asymmetric plasmas, electrostatic and
electromagnetic wave modes are coupled to each other and the degeneracy of
the two electromagnetic wave modes (that holds for symmetric distributions)
is therefore broken.

PACS numbers: 52.25.Xz, 52.27.Ny, 52.35.Fp, 52.35.Hr

1. Introduction

The intense scrutiny of the linear Weibel [1] mode in a relativistic plasma has been a recent
significant focus of research [2–8], because of the potential the mode holds to account for,
or substantially influence, a plethora of astrophysical plasma situations, ranging from the
creation of large-scale cosmological magnetic fields [9] via the formation of shock waves in
astrophysical outflows to instabilities driven by counterstreaming electron beams in the solar
system [10].

This scrutiny is because the linear Weibel mode represents a non-propagating unstable
disturbance, which therefore grows in place. As has been shown recently, for asymmetric
distribution functions unstable Weibel exist only for discrete wavenumbers, which we call
‘isolated unstable modes’. The presence of isolated modes is very reminiscent of the
development of soliton-like behaviours because the nonlinear structure of the full plasma
system for a soliton also has a unique wavelike behaviour. An isolated mode in linear
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theory strongly suggests that the investigation of nonlinear aspects will lead to a soliton
behaviour, although one must carry through the detailed quantitative development to be sure.
The corresponding development of nonlinear, self-consistent Weibel-like modes is still in its
infancy. Some progress has recently been reported in setting up such self-consistent modes
[11], although questions of their stability to perturbations, and of their nonlinear mode-coupling
to other linear or nonlinear plasma waves, still need to be addressed in detail. In principle, this
approach offers a way to incorporate the effect that the unstable modes impose on the particle
distribution, therefore making it also necessary to abstain from a linearized description of the
system. Although this method is powerful, the mathematical details are far too complicated
to allow it to be applied to general, arbitrary plasma distribution functions.

Both the linear Weibel mode and its nonlinear counterpart have been developed so far
as purely transverse waves with no coupling to any electrostatic wave components. Such
an evaluation of the linear mode is appropriate when the corresponding particle distribution
functions are symmetric in their momentum components, and is appropriate for the nonlinear
self-consistent mode when the particle distribution functions are symmetric in canonical
momenta components (i.e. involving the vector potential).

However, in many situations in relativistic astrophysical plasmas one is faced with particle
distributions that are manifestly asymmetric in some of their momentum components (e.g.,
‘jets’ from active galactic nuclei (AGN)) so that there are the capabilities of (i) coupling
the transverse Weibel-like modes to electrostatic mode components and (ii) also of breaking
the degeneracy for the transverse linear Weibel-modes depending on the wave propagation
direction relative to the particle asymmetry direction.

In this series of papers, the asymmetric linear mode situation for a homogeneous
relativistic plasma in the absence of an embedded uniform magnetic field is investigated
in order to evaluate both the coupling effects and the degeneracy breaking factors for Weibel-
like modes that have the dependence exp[ik(x − iMct)] for first-order perturbations, both k
and M are taken to be real so that any mode varies in time as exp[kMct]. Whereas this first
part is restricted to the general theory, in the forthcoming second part specific examples for
symmetric and asymmetric beam-plasma systems will be given.

Dispersion relations for relativistic plasmas have been investigated by Bret et al [12].
However, because they assumed a gyrotropic distribution function, the 3×3 determinant for
the dispersion relation did not include coupling effects between the longitudinal and transverse
modes. Only the two electromagnetic wave modes were coupled to each other. Therefore,
the electrostatic and the electromagnetic wave modes were factorized and the degeneracy of
the two electromagnetic modes was not broken. In this case, no isolated Weibel modes are
present.

Other growth rate studies of electromagnetic instabilities at oblique angles with respect
to a relativistic beam-plasma system have been carried out under the constraint of limiting the
relativistic motion solely to the beam direction [13]. Additionally, in [13] the analysis was
limited to a specific form of the distribution function of the beam, consisting of a waterbag
distribution for the background plasma and a delta function as well as—to incorporate thermal
effects—a waterbag function for the electron beam. In contrast, no constraints for the
distribution functions will be assumed in this paper, so that the methods developed here
are applicable to any kind of distribution function with the only restriction that the charge
neutrality is satisfied (equations (1a) and (1b)).

Numerical studies of the filamentation instability [14] also confirm that the fastest growing
wave mode is neither purely longitudinal nor purely transverse.

Therefore, in this paper a fully relativistic plasma is considered that is neither gyrotropic
in the plane perpendicular to the wave propagation direction, nor symmetric in general. The
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kinetic instabilities investigated in this paper are not derivable with the methods of fluid
models. Furthermore, investigations such as that of Kalman et al [15] are limited to the
non-relativistic regime and are, therefore, not appropriate to cover the full complexity of
the situation considered in this paper. The only limitation of our investigation is due to the
restriction on a linear description of the investigated unstable modes. However, while it is
certainly true that nonlinear effects will distort any linear mode, for new effects first the linear
behaviour needs to be investigated, as is done in this paper.

2. The general dispersion relation

The construction of the general 3×3 determinant describing the connection between k and M
is well known [16], so here the discussion is brief.

For arbitrary particle distribution functions Fa(p), where a describes the particle species,
and with the constraints∑

a

eana

∫
d3p Fa(p) = 0 (1a)

∑
a

eana

∫
d3p

p

γ
Fa(p) = 0, (1b)

where γ 2 = 1 + p2 denotes the squared Lorentz factor (where p is the normalized momentum
defined through p = P /(mac), for P the real momentum), and na is the equilibrium number
density of each species, one can write the dispersion relation in the form [16]

det ηlm = 0, (2)

where the elements ηlm are given by

η11 = k2 −
∑

a

ξ 2
a Ia(M) (3a)

η12 =
∑

a

ξ 2
a Iy,a(M) (3b)

η13 =
∑

a

ξ 2
a Iz,a(M) (3c)

η21 = −
∑

a

ξ 2
a Iy,a(M) (3d)

η22 = k2(1 + M2) +
∑

a

[
ξ 2
a (gx,a + gz,a) + Iyy,a(M)

]
(3e)

η23 =
∑

a

ξ 2
a [Iyy,a(M) − hyz,a] (3f )

η31 = −
∑

a

ξ 2
a Iz,a(M) (3g)

η32 =
∑

a

ξ 2
a [Iyz,a(M) − hyz,a] (3h)

η33 = k2(1 + M2) +
∑

a

ξ 2
a [gx,a + gy,a + Izz,a(M)]. (3i)
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Furthermore, definitions were introduced as

gx,a =
∫

d3p
1 + p2

x

γ 3
Fa(p) (4a)

g(y,z),a =
∫

d3p
p2

y,z

γ 3
Fa(p) (4b)

hyz,a =
∫

d3p
pypz

γ 3
Fa(p) (4c)

Ia(M) =
∫

d3p
γ

px − iMγ

∂Fa

∂px

(4d)

and

(Iy,a; Iz,a; Iyz,a; Iyy,a; Izz,a) =
∫

d3p

px − iMγ

∂Fa

∂px

(
py;pz; pypz

γ
; p2

y

γ
; p2

z

γ

)
, (4e)

where ξ 2
a = 4πe2

ana

/(
mac

2
)
.

Note that the anisotropy direction of Fa(p) is not necessarily parallel to the x axis—
the direction of the first-order dependence exp[ikx]—but that the constraints on the particle
anisotropy are such that equations (1a) and (1b) must be satisfied.

The analysis to follow is restricted to M real in order that one deals with temporally
growing but non-propagating disturbances.

First, in figure 1, different kinds of distribution functions are sketched by means of
Maxwellian distributions, that are: (a) symmetric in each individual momentum component
px, py and pz, and, at the same time, gyrotropic (i.e., symmetric around the x axis that is
assumed to be the axis of wave propagation); (b) gyrotropic, but asymmetric in the momentum
component px ; (c) non-gyrotropic, but symmetric with respect to the momentum vector
p = (px, py, pz) and (d) non-gyrotropic and asymmetric in individual momentum components
as well as in the momentum vector.

3. Symmetric situations

3.1. Individual momentum components

When each Fa(p) is symmetric separately in each of px, py, pz then

hyz,a = Iy,a = Iz,a = Iyz,a = 0. (5)

In this case only the diagonal terms of the 3×3 determinant survive so that one has three
independent modes described, respectively, by

k2 =
∑

a

ξ 2
a Ia(M) (6a)

k2 = −
∑

a

ξ 2
a [gx,a + gy,a + Iyy,a(M)](1 + M2)−1 (6b)

k2 = −
∑

a

ξ 2
a [gx,a + gy,a + Izz,a(M)](1 + M2)−1. (6c)

One recognizes the mode described by equation (6a) as the conventional electrostatic
mode, while the modes described by equations (6b) and (6c) correspond to the electromagnetic
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Figure 1. Different types of symmetric distribution functions. For simplicity, the pz direction is
not shown and assumed to have the form exp[−p2

z ]. Therefore, the distribution function in figure
(a) is rotational invariant around the x axis, which is the axis of wave propagation (indicated by
the arrow denoting the wave vector k); this is called ‘gyrotropic’. Furthermore, this function is
symmetric in all three momentum components. The distribution in figure (b) is also gyrotropic,
but asymmetric in py . The distribution in figure (c) is neither gyrotropic nor symmetric in px or
py . But it has total momentum symmetry, i.e., it is symmetric if p → −p. The distribution in
figure (d), finally, is non-gyrotropic and asymmetric in individual momentum components as well
as in the total momentum.

Weibel modes with degeneracy if and only if the distribution functions are cylindrically
symmetric in the momentum components perpendicular to the x axis, i.e., Fa(p) =
Fa

(
p2

x, p
2
y + p2

z

)
. For other than cylindrical symmetry there are two separate electromagnetic

modes.

3.2. Total momentum symmetry

When each Fa(p) is symmetric in the sense that Fa(−p) = Fa(p), a weaker symmetry than
for the individual component situation described above, then the factors Iy,a and Iz,y coupling
the electromagnetic component of the 3×3 determinant are not zero in general, and the
off-diagonal electromagnetic components are also not zero. In this situation there is not only
degeneracy lifting of the electromagnetic components of the determinant but also a coupling to
the electrostatic component. Conversely, there is also a coupling of the diagonal electrostatic
component to the electromagnetic components.

Note that there are now the pure imaginary components

(Iy,a; Iz,a) = iM
∫

d3p
γ

p2
x + M2γ 2

∂Fa

∂px

(py;pz)

≡ iM(Jx,a; Jy,a) (7a)
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together with the real components

(Iyz,a; Iyy,a; Izz,a) =
∫

d3p
px

γ
(
p2

x + M2γ 2
) ∂Fa

∂px

(
pypz;p2

y;p2
z

)
(7b)

and

Ia(M) =
∫

d3p
γpx

p2
x + M2γ 2

∂Fa

∂px

. (7c)

However, from the structure of the 3×3 determinant one notes that the pure imaginary
components always occur in product forms of the sort

(∑
a Iy,a

) · (∑
a Iy,a

)
,
(∑

a Iy,a

) ·(∑
a Iz,a

)
or

(∑
a Iz,a

)·(∑a Iz,a

)
so that they provide real contributions to the 3×3 determinant.

Accordingly, write the real factors

E =
∑

a

ξ 2
a Ia(M) (8a)

Y =
∑

a

ξ 2
a [gx,a + gz,a + Izz,a(M)] (8b)

Z =
∑

a

ξ 2
a [gx,a + gy,a + Iyy,a(M)] (8c)

D = −
∑

a

ξ 2
a [hyz,a − Iyz,a(M)] (8d)

and the pure imaginary factors

iCy =
∑

a

ξ 2
a Iy,a(M) = iM

∑
a

ξ 2
a Jy,a(M) (8e)

iCz =
∑

a

ξ 2
a Iz,a(M) = iM

∑
a

ξ 2
a Jz,a(M) (8f )

so that the dispersion relation (2) takes the form∣∣∣∣∣∣
k2 − E iCy iCz

−iCy k2(1 + M2) + Y D

−iCz D k2(1 + M2) + Z

∣∣∣∣∣∣ = 0. (9)

Then one has

0 = (k2 − E)[k2(1 + M2) + Y ][k2(1 + M2) + Z] − D2(k2 − E2)

−C2
y [k2(1 + M2) + Z] − C2

z [k2(1 + M2) + Y ] + 2DCyCz (10)

providing a cubic equation in k2 as a function of M. Roots of the cubic equation yielding
positive values of k2 represent the range (or ranges) of real M values permitting Weibel-type
modes.

4. Asymmetric plasmas and isolated Weibel-like modes

This subsection provides a general proof that for any asymmetric plasma distributions the
mode solutions of the 3×3 determinant from equation (2) provide solely isolated values of
the phase velocity M and, associated with these isolated phase velocities, only isolated and
discrete wavenumbers. There is no continuum range of k values, provided only that the plasma
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asymmetry is not precisely zero, i.e., finite no matter how small. Only when the asymmetry
is precisely zero does one recover the continuum behaviours sketched above for symmetric
plasma distribution functions.

For arbitrary plasma distribution functions, Fa(p), split them into their symmetric and
anti-symmetric parts with

FS,A
a (p) = 1

2 [Fa(p) ± Fa(−p)] , (11)

where the ‘+’ sign denotes FS
a and the ‘−’ sign denotes FA

a . Then, in the 3×3 determinant of
equation (2) one can write∣∣∣∣∣∣

k2 − � Cy Cz

−Cy k2 + Y D

−Cz D k2 + Z

∣∣∣∣∣∣ = 0, (12)

where now one has

� = �R + i�I ≡
∑

a

ξ 2
a

∫
d3p

γpx

p2
x + M2γ 2

∂F S
a

∂px

+ iM
∑

a

ξ 2
a

∫
d3p

γ 2

p2
x + M2γ 2

∂FA
a

∂px

(13a)

Cy,z = CR
y,z + iCI

y,z ≡
∑

a

ξ 2
a

∫
d3p

pxpy,z

p2
x + M2γ 2

∂FA
a

∂px

+ iM
∑

a

ξ 2
a

∫
d3p

py,z

p2
x + M2γ 2

∂F S
a

∂px

(13b)

D = DR + iDI ≡
∑

a

ξ 2
a

[
−hyz,a +

∫
d3p

pxpypz

p2
x + M2γ 2

∂F S
a

∂px

]

+ iM
∑

a

ξ 2
a

∫
d3p

pypz

p2
x + M2γ 2

∂FA
a

∂px

(13c)

Y = YR + iY I ≡
∑

a

ξ 2
a

[
gx,a + gz,a +

∫
d3p

pxp
2
y

γ
(
p2

x + M2γ 2
) ∂F S

a

∂px

]

+ iM
∑

a

ξ 2
a

∫
d3p

p2
y

p2
x + M2γ 2

∂FA
a

∂px

(13d)

Z = ZR + iZI ≡
∑

a

ξ 2
a

[
gx,a + gy,a +

∫
d3p

pxp
2
z

γ
(
p2

x + M2γ 2
) ∂F S

a

∂px

]

+ iM
∑

a

ξ 2
a

∫
d3p

p2
z

p2
x + M2γ 2

∂FA
a

∂px

(13e)

with superscripts R and I representing real and imaginary components, respectively.
One can then evaluate the 3×3 determinant from equation (12) and set the real and

imaginary components of the determinant to zero separately under the proviso that k2 and
M are considered real. Then the real part of the dispersion relation, equation (12), yields an
equation cubic in k2, as

0 = (k2 − �R)[(k2 + YR)(k2 + ZR) − Y IZI ] + �I [Y I (k2 + ZR) + ZI (k2 + YR)]

− 2DR
(
CR

y CR
z − CI

yCI
z

)
+ 2DI

(
CI

yCR
z + CR

y CI
z

)
+ (k2 + ZR)

(
CR

y CR
y − CI

yCI
y

) − 2ZICR
y CI

y + (k2 + YR)
(
CR

z CR
z − CI

z CI
z

)
− 2Y ICR

z CI
z − (k2 − �R)(DRDR − DIDI ) − 2�RDRDI . (14a)
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For later use, write equation (14a) in the generic form

0 = a(M)k6 + b(M)k4 + d(M)k2 + f (M). (14b)

The imaginary part of the 3×3 determinant yields an equation quadratic in k2 as

0 = −�I [(k2 + YR)(k2 + ZR) − Y IZI ] + (k2 − �R)[Y I (k2 + ZR) + ZI (k2 + YR)]

− 2DR
[
CI

yCR
z + CR

y CI
z

] − 2DI
(
CR

y CR
z − CI

yCI
z

)
+ ZI

(
CR

y CR
y − CI

yCI
y

)
+ 2CR

y CI
y (k2 + ZR) + Y I

(
CR

z CR
z − CI

z CI
z

)
+ 2CR

z CI
z (k2 + YR)

− 2DRDI (k2 − �R) + 2�I(DRDR − DIDI ). (15a)

For later use, write equation (15a) in the generic form

0 = b̃(M)k4 + d̃(M)k2 + f̃ (M). (15b)

But both equations (14b) and (15b) must be satisfied. So eliminate k2 between the pair of
equations (14b) and (15b). This elimination is most simply achieved by using equation (15b)
in the form k4 = −[f̃ (M)/b̃(M) + d̃(M)k2/b̃(M)] repeatedly in equation (14b) to reduce
equation (14b) to the form

k2 = η(M)

ζ(M)
, (16)

where

η(M) = f̃ (M)b(M)

b̃(M)
− d̃(M)f̃ (M)a(M)

b̃(M)2
− f (M) (17a)

ζ(M) = d̃(M)2a(M)

b̃(M)2
− f̃ (M)a(M)

b̃(M)
− d̃(M)b(M)

b̃(M)
+ d(M). (17b)

Then insert equation (16) into equation (15b) to eliminate k2 and so finally obtain

b̃(M)η(M)2 + d̃(M)η(M)ζ(M) + f̃ (M)ζ(M)2 = 0. (18)

Hence the theorem is proven because equation (18) provides discrete values of M (that
must be real and that are determined solely by the plasma parameters) and which, when each
is used in equation (16), provide fixed values of k2 (that must also be real and positive).

Hence for any asymmetric plasma distribution functions (subject only to the constraints
of equations (1a) and (1b) in order to have a charge and current neutral original plasma) any
modes of the form exp[ikx + kMct] with k and M both real are isolated, discrete modes.

The mode wave phase speed M is to be determined from the (finite) real M solutions
of equation (18) and the corresponding discrete k2 values from the solutions given through
equation (16) that yield k2 > 0, i.e., η(M)ζ(M) > 0. These results are valid for any
asymmetry, no matter how small (unless the asymmetry is precisely zero). Hence, all Weibel-
like modes of an asymmetric plasma are isolated modes in the absence of an embedded
background magnetic field.

5. Discussion and conclusion

In this paper, linear purely growing instabilities in a relativistic plasma have been investigated
in the absence of a homogeneous background magnetic field. Because the investigation was
undertaken in the absence of a homogeneous magnetic field in order to evaluate both the
coupling effects and the degeneracy breaking factors for Weibel-like modes, the propagation
direction of the unstable waves was, without loss of generality, limited to only one direction.
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It is well known that for a symmetric particle distribution function broad wavenumber
ranges can be found that permit unstable wave modes. In contrast, for an asymmetric particle
distribution function it has been now generally proven here that any unstable Weibel modes
are isolated. This result holds unless the asymmetry is precisely zero, showing that the broad
range of unstable wavenumbers occurring for symmetric distribution functions collapses into
discrete wavenumbers that permit unstable modes.

Presumably, the countable set of discrete modes is somewhat similar in character to the
countable set of discrete modes one obtains with a multi-beam plasma. As the number of
beams becomes large without limit the count of discrete modes in each momentum interval
also becomes large but so that a fixed fraction of the total countable set is contained in each
momentum interval. Thus one obtains the continuum representation of the modes. It can
be speculated that the same is true for the discrete and isolated Weibel-type modes as the
anisotropy tends to zero, although this remains to be investigated in detail.

Furthermore, for asymmetric plasmas, electrostatic and electromagnetic wave modes are
coupled to each other. In this case, the degeneracy of the two electromagnetic wave modes is
broken.

Because, in previous works [12–14] specific distribution functions have been assumed
that were either gyrotropic or symmetric in the direction of the wave propagation, it was not
possible to show the occurrence of isolated Weibel modes. In this paper, in contrast, the whole
complexity of a relativistic three-dimensional plasma with no requirements on the distribution
function has been investigated. Therefore, independent of the form of the distribution function,
whenever there is an asymmetry in the distribution function, any unstable linear Weibel modes
are restricted to discrete wavenumbers.

The question if such isolated modes really exist, however, has not been addressed in this
first paper. Only if the equation that determines the product of growth rate and wavenumber,
equation (18), has real and positive solutions, it has been shown that the resulting unstable
modes must be isolated. In a second paper, illustrative examples and numerical estimates of
the growth rates will be given for asymmetric distribution functions that, as will be shown
show, indeed allow the existence of such isolated unstable modes. Furthermore, self-consistent
particle-in-cell (PIC) simulations are currently in progress to confirm the existence of isolated
Weibel modes in asymmetric particle distribution functions.

Acknowledgments

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) through
grant no. Schl201/17-1 and Sonderforschungsbereich 591, and by the award of a Mercator
Professorship to Ian Lerche from the DFG. We are most appreciative of the support provided.

References

[1] Weibel E S 1959 Phys. Rev. Lett. 2 83
[2] Schlickeiser R 2004 Phys. Plasmas 11 5532
[3] Schaefer-Rolffs U and Schlickeiser R 2005 Phys. Plasmas 12 022104
[4] Tautz R C and Schlickeiser R 2005 Phys. Plasmas 12 072101
[5] Schaefer-Rolffs U, Lerche I and Schlickeiser R 2006 Phys. Plasmas 13 012107
[6] Tautz R C, Lerche I and Schlickeiser R 2006 Phys. Plasmas 13 052112
[7] Tautz R C, Lerche I and Schlickeiser R 2006 Non-resonant kinetic instabilities of a relativistic plasma in a

uniform magnetic field: Longitudinal and transverse mode coupling effects J. Math. Phys. submitted
[8] Tautz R C and Lerche I 2006 Plasma instabilities in gamma-ray bursts: neutral points and the effect of mode

coupling Astrophys. J. at press

http://dx.doi.org/10.1103/PhysRevLett.2.83
http://dx.doi.org/10.1063/1.1806828
http://dx.doi.org/10.1063/1.1844511
http://dx.doi.org/10.1063/1.1939967
http://dx.doi.org/10.1063/1.2164812
http://dx.doi.org/10.1063/1.2201533


13840 R C Tautz et al

[9] Schlickeiser R 2005 Plasma Phys. Contr. Fusion 47 A205
[10] Tautz R C and Schlickeiser R 2005 Phys. Plasmas 12 122901
[11] Schaefer-Rolffs U and Lerche I 2006 Phys. Plasmas 13 062303
[12] Bret A, Firpo M-C and Deutsch C 2004 Phys. Rev. E 70 046401
[13] Bret A, Firpo M-C and Deutsch C 2005 Phys. Rev. E 72 016403
[14] Bret A, Firpo M-C and Deutsch C 2005 Phys. Rev. Lett. 94 115002
[15] Kalman G, Montes C and Quemada D 1968 Phys. Fluids 11 1797
[16] Lerche I 1969 J. Math. Phys. 10 13

http://dx.doi.org/10.1088/0741-3335/47/5A/015
http://dx.doi.org/10.1063/1.2139505
http://dx.doi.org/10.1063/1.2207123
http://dx.doi.org/10.1103/PhysRevE.70.046401
http://dx.doi.org/10.1103/PhysRevE.72.016403
http://dx.doi.org/10.1103/PhysRevLett.94.115002
http://dx.doi.org/10.1063/1.1692198
http://dx.doi.org/10.1063/1.1664748

	1. Introduction
	2. The general dispersion relation
	3. Symmetric situations
	3.1. Individual momentum components
	3.2. Total momentum symmetry

	4. Asymmetric plasmas and isolated Weibel-like modes
	5. Discussion and conclusion
	Acknowledgments
	References

